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The subject matter of the first part or rnis study is the deri-

vation of coupled bending-torsion relations characterizing the dyna-
mical behaviour of unsymetrical cross-section beams. This allows for
the further definition of a beam element with seven degrees of free-
dom per node. The numerical results obtained with the FEM are compa- - -

red to experiment in some section shape cases.
In order to characterize the displacement field of considered

beams, the method of integrated displacements allows us to consider
the so-called secondary effects: longitudinal warping inertia, and
shear deformation due to both shearing forces and nonuniform warping.
The literature on dynamical flexure and torsion of beams is extensi-
ve. Cowper f i for flexure and Gay-Boudet 4-`for torsion introduce
integrated displacements. We extendin the following this notion to
the study of coupled bending-torsion of an homogeneous straight beam.

2. BASIC THEORY I
2.1 Displacement Field • S

S is the domain occupied by the cross-section. r is the bounda-
ry, and G is the centroid. In the plane of the section, the principal
axis are noted GX2,GX3. C (c2,c3) is the shear center, as defined by
Trefftz [3](figure I). 4

The displacement of any point M of the beam is noted XM(Xi), 0
with components Xi (i-1,2,3). Let us define the seven displacement
parameters:

Three angular parameters: ei(xl,t) *- Lif(GMM).'. dQ (1-a)
I X

Three linear parameters: Ui(xit) = 1- JXm.x dQ (1b)

A warping parameter: N(x 1 ,t) = fs.x 1 dQ (l-c)

ý(x2,x3) is the Saint-Venant warping function defined in C, and

I = f$ 2 dQ is the quadratic warping moment.
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x = + a ÷,, +i (2)

According to the above definitions, necessary orthogonality conditi-
ons hold in the domain 0 for the functions 1, X2, X3, t, 111, together
with: 0

fn2d~ -J'n d -f(X 2n3 -X0f 2 ) d 3

2.2 Equations of Motion 0

Assuming the lateral surface of the beam free of any force, we
take into account as first hypothesis (H.1) the assumption that nor-
mal stresses 022 and 033 are expected to be negligible compared to
ail. Then, the principle of virtual work associated with the displa-
cement field (2) leads to the classical set of motion equations: 0

pSU,tt = F,÷ p (4-a,b,c)

p[l]•,tL - Mi + ,, + X1 XF (5-a,b,c) . -

And the seventh motion equation is the bimoment one:

pI46,tt - B,1 + b + (MI-GJe 1 , 1 ) - c 2 F 3 + c 3 F 2  (6)

in which B =f* ll dP2 is the generalized bimoment.

2.3 Constitutive Equations

In order to obtain a technical formulation for the constitutive
equations, we aspume as second hypothesis (H.2) that the change in .
the deformation n of two infinitely near adjacent cross sections is
neglected in order to evaluate the longitudinal and shear stresses
oaj, j - 1,2,3. Thus, starti-ag from the Hooke's law for a linear elas-
tic body, the constitutive equations below are deduced from integra-
tions over the domain of the section:

u 9, U - ; e 2 , 1  =- B 6,, B (7-a,b,c,d)
ES E1 2  E1 3  EIl

Moreover, noting that the first component ni of T1 (2) is essentially
due to the shear forces F 2 , F3 and nonuniform warping moment noted
Mnuw = (MI-GJ6 1 , ), we obtain the three followed coupled relations
written in matrix form:

1 - Kil -K 1 2  -K 1 3  Mnuw/G(Il-J)_

U2ol - ) 3 - " = -K 21  K2 2  -K 2 3  F2 /GS (8-a,b,c)

u3tl + 62+ C 2
6 -K 3 1 -K 3 2 K 3 3 F 3 /GS
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In (8) appear nine shear coefficients with the symmetryproper-
ties:

Ili-J "'

K2 3 - KJ 2  Kjj Kj1  S , j-2,3 (9-ab,c) .
*

Starting from the local equilibrium of continuous media, we
show that the shear coefficients Kij can be computed after solving
three Poisson's problems in the cross section, namely:

I V2 g - f(xix 3 ) over Q, with successively f - x 2 ,x 3,..

ag/3n - 0 along the beundary r (10-a,b,c)

with fg dQ - 0

For the complete expressions of Kij, see appendix A. The effective
calculus of all bending-torsion constants involved in the aforemen-
tioned relations (Ii, J, I, Kij, ci) has been performed by means of
a boundary element method [4]. *

3. FINITE ELEMENT FORMULATION

For the setting up of a finite element formulation, let us
first look at the technical expressions of potential and kinetic
energies. "•

3.1 Potential Strain Energy V(xi,t)

For a 1-eam element of length dxj, and according to H.1, the
general form .I strain energy:

dV = {• faijeijdQ}dxl

reduces to:
+ f + 2Y3 E1 ) dQ (11)Vi ! f(G011 11 + 2 12£:12 1 3

Considerati•;:°, of (2) and H.2 leads to the practical expressions:

V, 1  V0 ,1  + VTi (12)

in which:1 M2B 2

fF2 M2 3
2 ES-+2 +- + - } (13-a)V 2 ES El 2  E1 3 EIl

F22 F2 2- 1{K2 Mi2UW

22 + K -3 + K ...
Vo, 2 22 GS GS G(I 1 -J)

(GJeO ,)2 F2F3 Mnuw ( 1 -J
+ 2 _ (K 2 3 +K 3 2 ) {F 2 (K1 2+ K2 1) + ...

GS G(I 1 -J) S
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fee F3 (K13 +-•-Lj- K 3 1 )) (13-b)

S

3.2 Kinetic Energy ,

In the same way, we retain the simple expression:

- pSdý t)2+ 1 pIt,c L IT A

T 2 2 • 0

3.3 Definition of the Element

Seven displacements per node k characterize the motion of tt-'
two-nodes beam element. In a matricial form:

N O " U 1 2V 3,12* 1 6{wkl - [u 1,u 21 e33 u3,O,e 1,e,J•k .

Substituting the static case for the quasi-static dynami,-', one
leads to an interpolation matrix [A] not detailed here, allowix', a
displacement field in the form of: O

{W(x ,t)} - [A(x{)]W{(t)) (15)

where {W(t)} W M(t)

3.4 Stiffness Matrix

Introducing the displacement field (15), the element strain
energy is obtained after integration of (13) over the lengLh £ of the
element, and written in the matrix form:

2V - {W}T[DV {W}

We detail in Appendix B the stiffness matrix [D] in the simpli-
fied case i~j÷Kij,0O. It can be noted that, for symetrical section sha-
pe cases and for uniform warping (Saint-Venant torsion), this stif-
fness matrix reduces to the classical one derived by Przemieniecki [5].

3.5 Mass Matrix

The calculus of the kinetic energy for the whole element by
means of (15) leads to the form:

2T T2T - {W,t}[M] {W,t} •

in which [M] is a consistent mass matrix, reached after very heavy
calculus. In the much more simpler case of lumped mass approximation,
the kinetic energy reduces to: *
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2T P - { (ui,t + Ijkjt + I06kt}
k= 1,2 j l1,23

from which a simple diagonal mass-matrix is easily derived.

4. APPLICATIONS

Numerical and experimental tests have been performed on several ,: - -

cantilever beams. For the dynamical fle..ure and torsion of a rectan-
gular section beam, numerical values of frequencies provided by FEM
and analytical ones are in good agreement with the experiment, espe-
cially for high frequencies. The dynamical torsicn of anI-section
beam has been likewise investigated. In such a case, exact analytical
values of torsional constants cannot be reachedb needing a previous :
computational woek. The results for dynamical case are detailed in
reference [6], and some of them are recalled in appendix C. In a samemanner, we have also tested two U-section beams (thick and thin). Here

coupling between flexure and torsion occurs, and the whole theory abo-
ve applies. We shall present both numerical and experimental frequen-
cies. Rather good agreement can De noted for all tests,the rank of
the modes concerned depending on the number of elements of the discre-
tization.

5. CONCLUSION

The study of coupled bending-torsion can be performed with ac-
ceptable accuracy by means of the formulation above, starting from
the definition of seven displacements parameters in each section of
the beam. The finite element derived allows a simple numerical pre-
diction of the dynamical behaviour of beams with any cross sections.
Nevertheless, we must keep in mind that an accurate computation of
coupled bending-torsion constants is the first stage when using this

element.

- NOMENCLATURE

E,G Young's and shear modulus.

S,I•,,2,13 Cross section area and quadratic moments of inertia in G.

it Quadratic warping moment.

3 Saint-Venant's torsional rigidity.

F1,F2,F3 Normal and shear forces.

M ,M 2 ,M 3  Torsion torque and bending moments. _

U,ý Linear and angular displacement vectors (components:ui and 6i).

-xi Unit vectcrs of principal axis.

p Mass per unit volume.

( ),i Partial derivative with respect to xi.

( )'t id. with time t.

a /an Outward normal derivative along the boundary r.

p,m,b Distributed forces, moments and bimoment along the beam.

[I] Diagonal inertia matrix of cross section. p

n Complementary displacement vecto:.
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1_,3pyen d i x A

Shear Coefficients Kij

Solutions of (10-a,b,c) allow the knowledge of the functions
gi 0 (i-l, 2 , 3 ) verifying over the domain Ql of the cross-section:

Sc 3  S
13

v --g -- X

920 I3 12

I11-J

V2 930

with @gi 0 /an 0 ; i=1,2,3 along the boundary r.

Then, the Kij are deduced in the form of:

K 1 1 =- fg 3 0 d•

and for i,j=2,3 ; i#j ; k=j-1
*



K.. *i fxj gko dSI + (j-i) I .f:g. d. .

_I fxj gk0 dQ + (j-i) t-j fogko dilK i i= l n ", I 2:2ii:••il . .

Ii-JJKJ fogk0 d6O_____

--S Kj " --- fxg 3 0 d + (i-j) -- ftg3o dQ

SS

The properties of symetry of the Kij are shown by means of the
Green-Gauss theorem, and we find:

II-J
'K23  U K3 ; KKj I S j- - -

App-endix B,.,i..--

Stiffness Matrix [D] .. 9.o. ,

We introduce the following dimensionless notations:

a I + Kc,1  x- 2V2 - c1 ) s
I1-J ctalo chX9..-I

I1 ko = {_. (akl-2) + - (_-_+ )S (k 1 -2)} -
01 it 1+03 1+02

01 - 12 K1  - EI- 0 a =-• (2-k 1 )

EIj Ic(2-k
j-2,3 4- j= 12 Kjj ca ko I"- (2-k1 )

GSX 1+0.j

Then, the symetry properties of [D] leads to the following
terms, in the simplified case : i~j+Kij-O.

= - ES 8
d' f d6 = -d' = -d - others d! - d3 = d - 01 1 .1

d9 = -d2 = 12 EI• 0 02 d - (1+0) (9*63)
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d 2 -d10  -d3  d 2
9 9 2

d 2 d9 -d 2 4 12 El 3  c 12 El 2 • c2/cd4 d - -d 9  k £ 3 (1+l3) a2 C3/C 2  c+22) 3

d- d 2  -d, - 2  -91- d41 -I 4 d.

d6 d1 3  -d 1 3 = -d 9  a3(1+3)1 £C

2 7 13 C_
7 d14  - ko GJ --

d 3 o - Ed1 (4+03+38a)d1 = X° 1(+03)

3 1 3

d6 12  2a d' o " = d

d . d3 3 d6 0 d1 0 _ d_
d6 - 1 - 1  - 1 3  26d

L -
d d 34 m d 70 a d 1 - d 2d7 1 1 1 4 7l "d

d E33  (2-0 +383)

d' 4 di = -d• 4 12 E1(2• i (I4 (1+023

d 4 d 4 _dI I d . 5 d 4
-12 12 El2 4

1 4 7 1112d7= -1 d -d 1 -ko GJ

12 X l (1÷+02) 2 2

diS ,-d12 d5 d 6 d6 dl -d1 3  1d2 12 El2

5 1 2 d12 2 7 d 4
d7 d 12 1 = 4d 2 - 7
5s 12d1 -k -d 134d

1= 2 d

d =2 E12_ (2-) 2+3 ý2)
6 12 7 4

k- -- d2
El 2 (ý) -2 3 " 23

kGJ kl 12 k E +
• l . 2-k 1



-7 13 GJd6 6d 7 1 .3 0
d 7 d14 -d1 3  -d-14  ko I0

S7 
d 1 4  

- GJko (shXt -aX chX ) + a 12 C2 + 13 C )d7 !4 "' -
aX(chXX-l) 01 1+(D2 1+0 3

... (sh• - XtchXk)}

12 C2 13 C 3 ,
d - GJko { (shXL --,) + 1 + 2 --- 3

Appendix C

The study of natural torsional frequencies of a cantilever beam
performed by means of the finite element procedure has been compared
to the experimental datas. The results concerning the relative error
are shown on table I below. •

j'j700  MODE N* 1 2 3 4 5 6 7 8 O 10

_ , ERROR 2 0. 0.9 0. 0.7 - I .

Table 1.

* S

X 2
_9 0 ..

FigurelI.
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